Research: Magnetic Currents in DNA-Molecules Understood with New Theory
2019-11-12
Jonas Fransson, Professor at Uppsala University, has developed a model for how electrons move in helix shaped molecules when they are affected by external forces. In the model is for the first time taken regard to the internal interactions between the electrons.

As early as two decades ago magnetic currents in helix shaped molecules were discovered, for example in DNA-molecules. The magnetic currents have since then puzzled the researchers but also given rise to theories about how for example birds navigate on Earth.
A number of different experiments have been done where helix shaped molecules have been exposed to some form of strong external influence, so called non-equilibrium, and one has been able to measure the magnetic currents which have been generated. The experiments have shown that the electron currents are strongly affected by magnetic fields, which is typical for magnetic materials and molecules, since they have an internal magnetic moment which may be affected by external forces. But there is though no evidence that in the helix shaped molecules there is an internal magnetic moment, which has hampered the theory development of the experimental results.
Until now the theory of the origin of the magnetic activity has been modelled with the help of so called single electron theory. The theory has ignored the interactions, or correlations, between the electrons. With this theory it is possible to explain the origin of the magnetic activity by symmetry violations due to the helix shaped geometry, the spin of the electrons and that the system is out of equilibrium. But the theory has not been able to answer how the electron currents are changed as a reaction to exterior forces.
Jonas Fransson has now suggested a new model where regard is taken to the internal interactions of the electrons. The model gives answers to how the electron currents are affected by external forces and gives rise to different strong fluxes depending on how these are directed.
Article reference
J. Fransson (2019); Chirality-Induced Spin Selectivity: The Role of Electron Correlations, J. Phys. Chem. Lett. 2019. Publication Date: October 28, 2019, DOI: 10.1021, https://doi.org/10.1021/acs.jpclett.9b02929
More news
-
Welcome to the Nobel Lectures in Uppsala
2019-12-02
-
Research: Magnetic Currents in DNA-Molecules Understood with New Theory
2019-11-12
-
Welcome to 2019 inaugural lectures and the inauguration of professors ceremony
2019-11-01
-
Research Funding: 41 Million SEK in Project and Starting Grants from the Swedish Research Council
2019-10-31
-
Available position: PhD position in Experimental High Energy Neutrino Astrophysics
2019-10-17
-
Ulf Danielsson explains the Nobel Prize in Physics 2019
2019-10-08
-
Research: Superconducting material discovered with unique code
2019-10-04
-
Rajeev Ahuja APS Fellow 2019
2019-10-02
-
Research Funding: Project within Dynamic Quantum Matter is Granted 28 Millions
2019-10-01
-
Press release: High pressure electronic transitions a pathway to high-temperature superconductivity in hydrogen
2019-09-25
-
Press release: One step closer to future quantum computers
2019-09-17
-
Researcher Profile: “It’s OK to be driven by curiosity alone”
2019-05-10
-
Research: Ultrafast Transition to New Metastable Crystal Phase Discovered
2019-03-25
-
Research: New Particle World Record Key to the Mysteries of the Universe?
2019-02-27
-
Research: Our Universe: An expanding bubble in an extra dimension
2018-12-27
-
Press Release: Magnetic Antiparticles Offer New Horizons for Information Technologies
2018-08-15
-
Research: Neutrinos in the ice indicate source of cosmic rays
2018-07-12
-
Live Press Conference on Astrophysics Breakthrough
2018-07-12
-
Film: Why does the IceCube telescope measure neutrinos at the South Pole?
2018-07-12
-
Collaboration: New fund for PhD-students established
2018-06-04
-
Research: Magnetic Phase Transitions Become Faster
2018-04-16
-
Press release: New method enables high-resolution measurements of magnetism
2018-02-06
-
Research: Ultra Fast Change of Volume Discovered in Magnetic Materials
2018-01-26
-
Research Funding: Grants for renewable-energy research
2017-12-08
-
Research: On the hunt for new and peculiar superconductors
2017-10-27
-
Research: Measuring magnetism in 3D
2017-06-08
-
Collaboration: Seminar with Nobel Laureate Frank Wilczek "Time Crystals – New States of Matter"
2017-05-24
-
Press release: Magnetic order in a two-dimensional molecular chessboard
2017-05-22
-
Education: New study program for people newly arrived in Sweden
2017-02-22
-
Press release: A new type of nano-sensor detects DNA building blocks
2017-02-13
-
Uppsala’s FREIA Lab to help upgrade the Large Hadron Collider
2016-11-02
-
Press release from DLR: Comet lander Philea found
2016-09-05
-
Press release: Magnetism under the magnifying glass
2016-08-31
-
Article on New Scientist: Impossible vanishing stars could be signs of advanced alien life
2016-08-01
-
MAX IV – ready to open up a new world
2016-06-21
-
New combination of materials could speed up computers
2016-06-17
-
Collaborative project on thermal cameras in teaching
2016-06-16
-
Prize: Johan Larsson awarded Uppsala University's Pedagogical Prize 2016
2016-05-25
-
Press release: New method to create terahertz radiation advances materials science
2016-05-23
-
Campus movie about Ångström Laboratory
2015-11-13
-
90 million SEK from The Knut och Alice Wallenberg Foundation
2015-10-08
-
A colloquium on this year’s Nobel Prize in Physics
2015-10-06
-
Two independent and primitive envelopes of the bilobate nucleus of comet 67P
2015-09-29
-
Builds electronics to new experimental facility (in Swedish)
2015-06-12