Research: Superconducting material discovered with unique code
2019-10-04
By developing unique code, Peter Oppeneer and his research team have discovered a new superconducting material – a material that conducts current without energy loss and that repels magnetic fields. Eventually researchers hope that superconductors will contribute to solving the world’s energy problems.

Photograph: Mikael Wallerstedt
Five years ago Peter Oppeneer, a professor of materials theory at the Department of Physics and Astronomy at Ångström Laboratory, decided to focus his attention on superconductors. At the time, no scientific tools were available to predict whether a material would become superconducting and, if so, at what temperature it would occur. Working at the Ångström Laboratory with Alex Aperis, a researcher in materials theory, Oppeneer and others started developing “Uppsala superconductivity code” – the code that researchers now have demonstrated can be used for just such predictions. This applies both to conducting research on existing materials and designing new ones.
“What fascinates me is that we can now understand things with incredible precision. Our understanding of superconductors becomes much deeper and broader. We acquire a lot of information we could not obtain before,” says Oppeneer.
“Yes, exactly, now we can look at a material and at the atomic level determine what is happening instead of relying on models,” says Alex Aperis.
Opens new doors for research
Both researchers find it very intriguing to have found a new way to investigate superconductivity.
“This is really interesting. It’s like opening the door to a new room or receiving whole new glasses,” says Aperis.

Photo: Mikael Wallerstedt
The material designed by the researchers is called hydrogenated magnesium diboride, MgB2H, which was developed together with colleagues at the University of Antwerp. So far it does not exist as physical matter, but rather as a description created with the unique code. One of the things that surprised the researchers the most is that the material becomes superconducting at a relatively high temperature even though it is only three atoms thick. In this case that means a temperature of 67–100 Kelvin, which is the same as between minus 206 and minus 173 degrees Celsius.
High-temperature superconductors is the field were the world’s researchers currently are competing most intensively, says Peter Oppeneer. The ultimate dream is a material that becomes superconducting at room temperature, so that cooling becomes superfluous.
“Much of the research available is theoretically interesting but lacks practical applications. We think that the knowledge we gain through basic research can also be of interest to those conducting research focused on applications,” Oppeneer explains.
Use in MRI scanners and wind power
Today superconductors are used mainly to create very strong electromagnets used in magnetic resonance imaging scanners and particle accelerators, but also in areas such as wind power. The crux of the matter for large-scale and wide use is still finding materials that are superconducting at higher temperatures under normal pressure and that also have the correct mechanical properties. We are still awaiting breakthroughs in many possible applications, which could mean that it would become commonplace to have very efficient electric motors, super-fast computers no bigger than coins and power lines without electrical losses.
In their further work, Peter Oppeneer and Alex Aperis will primarily focus on using the code they have developed to try to understand the mechanisms behind what are called unconventional superconductors. These are superconducting materials for which no explanatory models currently exist.
“Now that we can investigate materials in a whole new way, we also see great opportunities for new discoveries,” says Oppeneer.
Facts
In order for superconducting to occur, a substantial cooling is usually required. High-temperature superconductors are materials that become superconducting at temperatures above 77 degrees Kelvin, or –196 degrees Celsius, and this allows them to be cooled with liquid nitrogen. When superconductivity was first discovered at the beginning of the 20th century, mercury was cooled down to 4.2 kelvins, or –273 degrees Celsius. Temperatures this low require liquid helium. Since it is much easier and cheaper to cool with nitrogen, the discovery of high-temperature superconductors represented something of a revolution in physics. This led to the Nobel Prize in Physics in 1987.
Publication
The research is published in Physical Review Letters, https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.123.077001
Lisa Thorsén
More news
-
Available position: Nystartsjobb: Administrativ assistent
2021-01-21
-
Available position: PhD position in studying hydrogen in amorphous materials
2021-01-19
-
Available position: PhD student in Materials Theory for Quantum Control
2021-01-15
-
You did not miss the nuclide calendar, did you?
2020-12-14
-
Research Funding: ERC Consolidator Grant to Venkata Kamalakar Mutta
2020-12-09
-
Research Funding: 35 Million SEK in Grants for accessibility to infrastructure from the Swedish Research Council
2020-11-23
-
Infrastructure: Component testing for the EES facility can begin
2020-11-09
-
Research Funding: 35 Million SEK in Project and Starting Grants from the Swedish Research Council
2020-10-29
-
Education: The Bachelor Programme in Physics One of the Most Popular Programmes
2020-07-30
-
Educations Open for Late Application
2020-07-15
-
New World Ranking: Uppsala University Best in the Nordics in Physics
2020-07-14
-
Education: The Government’s Extra Investments – Uppsala University Gets This Many New Spots
2020-06-30
-
Press Release: New Form of Magnetic Order Discovered in the Element Neodymium
2020-05-29
-
Scholarships for current international students at Uppsala University academic year 2020/2021
2020-05-28
-
Education: Laboratory Exercises at a Distance
2020-05-11
-
Research: Unusual Type of Superconductivity Discovered
2020-04-07
-
Research: Magnetic Hydrogen-Based Superconductor Discovered
2020-02-26
-
Research: New Method to Simulate Vibrational Spectroscopy of Atoms
2020-02-26
-
Press Release: The University Invests 80 Million in Technology Environment for Advanced Research Equipment
2020-02-18
-
Let the ball swing at the Ångström Laboratory
2020-01-31
-
Collaboration: 3D-printing allows production of environmentally friendly radiation absorbers
2020-01-29
-
Press Release: Spin States can be Moved Faster than Expected
2020-01-23
-
Prize: Oscar Grånäs Awarded the Lindbomska belöningen
2020-01-20
-
Research: New Discovery Can Give Faster Spintronic Elements
2019-12-03
-
Welcome to the Nobel Lectures in Uppsala
2019-12-02
-
Research: Magnetic Currents in DNA-Molecules Understood with New Theory
2019-11-12
-
Welcome to 2019 inaugural lectures and the inauguration of professors ceremony
2019-11-01
-
Research Funding: 41 Million SEK in Project and Starting Grants from the Swedish Research Council
2019-10-31
-
New Honorary Doctors Appointed at Uppsala University
2019-10-16
-
Research Funding: ERC grants SEK 80 million to research on material theory
2019-10-14
-
Ulf Danielsson explains the Nobel Prize in Physics 2019
2019-10-08
-
Research: Superconducting material discovered with unique code
2019-10-04
-
Rajeev Ahuja APS Fellow 2019
2019-10-02
-
Research Funding: Project within Dynamic Quantum Matter is Granted 28 Millions
2019-10-01
-
Press release: High pressure electronic transitions a pathway to high-temperature superconductivity in hydrogen
2019-09-25
-
Press release: One step closer to future quantum computers
2019-09-17
-
Researcher Profile: “It’s OK to be driven by curiosity alone”
2019-05-10
-
Research: Ultrafast Transition to New Metastable Crystal Phase Discovered
2019-03-25
-
Research: New Particle World Record Key to the Mysteries of the Universe?
2019-02-27
-
Research: Our Universe: An expanding bubble in an extra dimension
2018-12-27
-
Press Release: Magnetic Antiparticles Offer New Horizons for Information Technologies
2018-08-15
-
Research: Neutrinos in the ice indicate source of cosmic rays
2018-07-12
-
Live Press Conference on Astrophysics Breakthrough
2018-07-12
-
Film: Why does the IceCube telescope measure neutrinos at the South Pole?
2018-07-12
-
Collaboration: New fund for PhD-students established
2018-06-04
-
Research: Magnetic Phase Transitions Become Faster
2018-04-16
-
Press release: New method enables high-resolution measurements of magnetism
2018-02-06
-
Research: Ultra Fast Change of Volume Discovered in Magnetic Materials
2018-01-26
-
Research Funding: Grants for renewable-energy research
2017-12-08
-
Research: On the hunt for new and peculiar superconductors
2017-10-27
-
Research: Measuring magnetism in 3D
2017-06-08
-
Collaboration: Seminar with Nobel Laureate Frank Wilczek "Time Crystals – New States of Matter"
2017-05-24
-
Press release: Magnetic order in a two-dimensional molecular chessboard
2017-05-22
-
Education: New study program for people newly arrived in Sweden
2017-02-22
-
Press release: A new type of nano-sensor detects DNA building blocks
2017-02-13
-
Uppsala’s FREIA Lab to help upgrade the Large Hadron Collider
2016-11-02
-
Press release from DLR: Comet lander Philea found
2016-09-05
-
Press release: Magnetism under the magnifying glass
2016-08-31
-
Article on New Scientist: Impossible vanishing stars could be signs of advanced alien life
2016-08-01
-
MAX IV – ready to open up a new world
2016-06-21
-
New combination of materials could speed up computers
2016-06-17
-
Collaborative project on thermal cameras in teaching
2016-06-16
-
Prize: Johan Larsson awarded Uppsala University's Pedagogical Prize 2016
2016-05-25
-
Press release: New method to create terahertz radiation advances materials science
2016-05-23
-
Campus movie about Ångström Laboratory
2015-11-13
-
90 million SEK from The Knut och Alice Wallenberg Foundation
2015-10-08
-
A colloquium on this year’s Nobel Prize in Physics
2015-10-06
-
Two independent and primitive envelopes of the bilobate nucleus of comet 67P
2015-09-29
-
Builds electronics to new experimental facility (in Swedish)
2015-06-12