New combination of materials could speed up computers
2016-06-17
Researchers at Uppsala University have discovered a new combination of materials that paves the way for faster and more effective storage in electronic devices like computers and smartphones. What researchers discovered is that the so-called magnetic damping can be made extremely small, eliminating energy losses in the dynamics of magnetic materials.
The material identified is a binary metallic ferromagnetic alloy of cobalt and iron with damping approaching the magnitude of 10-4. Damping this low has previously only been observed for metalloids or magnetic insulators, such as certain iron oxides.
Magnetic materials have proven to be very effective for the storage and transfer of data and were the natural successors to the punch card that was first used in the early 1700s. Subsequent developments, including magnetic tape and hard discs, enabled an explosion in information technology and today about 70 percent of all data is stored in magnetic media.
Thus far, we have been able to create micrometre-sized magnetic storage devices and achieved transfer speeds in the order of nanoseconds to meet today’s storage needs, with data transfer in the magnitude of 100 petabytes (1,000,000,000,000,000 bytes) a day. To continue to meet advanced storage needs, we need smaller and faster devices and this requires either a new technology for storage and/or the discovery of new magnetic materials.
Uppsala researchers have discovered just such a new magnetic material in the iron-cobalt alloy, and found that damping can be used to achieve maximum energy-efficient data transfer inside the material.
The damping in a magnetic material can be compared with the friction in a hockey puck, which glides along the ice, and which stops after a while due to resistance against the surface. The damping parameter in magnetic materials can be likened here to the coefficient of friction between the hockey puck and the ice.
The phenomenon of low damping in iron-cobalt can be explained by a unique property in the internal electronic structure, in which the damping is proportional to the number of electronic states at the highest occupied energy level.
This new discovery on low damping in the iron-cobalt alloy, along with the fact that the material is easy to produce, is magnetic even at room temperature, and that both iron and cobalt are common elements, can lead to this material becoming a standardised reference material for comparison in the hunt for new and even better alloys.
The cooperation between experiment and theory is very successful in this area of research, and the published study demonstrates the importance of collaboration in meeting the challenges new technologies place on the materials.
The published study provides a new and fundamental understanding of damping mechanisms, which enables theoretic predictions of new and even more energy-efficient materials, among both metals and metalloids, in which damping could be even lower than in the now-identified iron-cobalt alloy.
Contributors to the study, which was published in Nature Physics on 16 May, include Danny Thonig, Olle Eriksson and Olof Karis at the Department of Physics and Astronomy at Uppsala University. The research is based on an international collaborative effort involving both theoretic calculations and experimental studies.
The study was presented in the scientific journal Nature Physics on 16 May.
Camilla Thulin
More news
-
Welcome to the Nobel Lectures in Uppsala
2019-12-02
-
Research: Magnetic Currents in DNA-Molecules Understood with New Theory
2019-11-12
-
Welcome to 2019 inaugural lectures and the inauguration of professors ceremony
2019-11-01
-
Research Funding: 41 Million SEK in Project and Starting Grants from the Swedish Research Council
2019-10-31
-
Available position: PhD position in Experimental High Energy Neutrino Astrophysics
2019-10-17
-
Ulf Danielsson explains the Nobel Prize in Physics 2019
2019-10-08
-
Research: Superconducting material discovered with unique code
2019-10-04
-
Rajeev Ahuja APS Fellow 2019
2019-10-02
-
Research Funding: Project within Dynamic Quantum Matter is Granted 28 Millions
2019-10-01
-
Press release: High pressure electronic transitions a pathway to high-temperature superconductivity in hydrogen
2019-09-25
-
Press release: One step closer to future quantum computers
2019-09-17
-
Researcher Profile: “It’s OK to be driven by curiosity alone”
2019-05-10
-
Research: Ultrafast Transition to New Metastable Crystal Phase Discovered
2019-03-25
-
Research: New Particle World Record Key to the Mysteries of the Universe?
2019-02-27
-
Research: Our Universe: An expanding bubble in an extra dimension
2018-12-27
-
Press Release: Magnetic Antiparticles Offer New Horizons for Information Technologies
2018-08-15
-
Research: Neutrinos in the ice indicate source of cosmic rays
2018-07-12
-
Live Press Conference on Astrophysics Breakthrough
2018-07-12
-
Film: Why does the IceCube telescope measure neutrinos at the South Pole?
2018-07-12
-
Collaboration: New fund for PhD-students established
2018-06-04
-
Research: Magnetic Phase Transitions Become Faster
2018-04-16
-
Press release: New method enables high-resolution measurements of magnetism
2018-02-06
-
Research: Ultra Fast Change of Volume Discovered in Magnetic Materials
2018-01-26
-
Research Funding: Grants for renewable-energy research
2017-12-08
-
Research: On the hunt for new and peculiar superconductors
2017-10-27
-
Research: Measuring magnetism in 3D
2017-06-08
-
Collaboration: Seminar with Nobel Laureate Frank Wilczek "Time Crystals – New States of Matter"
2017-05-24
-
Press release: Magnetic order in a two-dimensional molecular chessboard
2017-05-22
-
Education: New study program for people newly arrived in Sweden
2017-02-22
-
Press release: A new type of nano-sensor detects DNA building blocks
2017-02-13
-
Uppsala’s FREIA Lab to help upgrade the Large Hadron Collider
2016-11-02
-
Press release from DLR: Comet lander Philea found
2016-09-05
-
Press release: Magnetism under the magnifying glass
2016-08-31
-
Article on New Scientist: Impossible vanishing stars could be signs of advanced alien life
2016-08-01
-
MAX IV – ready to open up a new world
2016-06-21
-
New combination of materials could speed up computers
2016-06-17
-
Collaborative project on thermal cameras in teaching
2016-06-16
-
Prize: Johan Larsson awarded Uppsala University's Pedagogical Prize 2016
2016-05-25
-
Press release: New method to create terahertz radiation advances materials science
2016-05-23
-
Campus movie about Ångström Laboratory
2015-11-13
-
90 million SEK from The Knut och Alice Wallenberg Foundation
2015-10-08
-
A colloquium on this year’s Nobel Prize in Physics
2015-10-06
-
Two independent and primitive envelopes of the bilobate nucleus of comet 67P
2015-09-29
-
Builds electronics to new experimental facility (in Swedish)
2015-06-12